

Fig. 1. Perspective view of molecule (1), showing the atomnumbering scheme.

The molecules comprise centrosymmetric dimers: the two crystallographically independent molecules show only trivial structure differences (Table 2). Each Sb atom exhibits rather exact trigonal-bipyramidal coordination with one O atom apical and one equatorial, as expected for a four-membered ring. For $\mathrm{Sb}(1)$, the apical atoms are $\mathrm{C}(121)$ and $\mathrm{O}\left(1^{\prime}\right)$ and the equatorial atoms are $\mathrm{C}(111), \mathrm{C}(131)$ and $\mathrm{O}(1)$: of the three $\mathrm{Sb}-\mathrm{C}$ distances, the apical $\mathrm{Sb}(1)-\mathrm{C}(121)$ distance is significantly longer than the other two; likewise the apical $\mathrm{Sb}-\mathrm{O}$ distance is much longer than the corresponding equatorial distance. These observations on $\left(\mathrm{Ph}_{3} \mathrm{SbO}\right)_{2}$ neatly encapsulate most of the familiar generalizations
made by VSEPR theory about trigonal-bipyramidal structures.
The dimeric structure found for triphenylstibine oxide is in sharp contrast to the monomeric structure, containing near-tetrahedral Sb , found for triphenylstibine sulfide (Pebler, Weller \& Dehnicke, 1982). It is interesting to note the changes in structure of the triaryl element oxides $\mathrm{Ar}_{3} M \mathrm{O}$ ($M=\mathrm{P}$, As or Sb) which may most simply be summarized thus:

$$
\mathrm{Ar}_{3} \mathrm{P}=\mathrm{O}
$$

References

Bordner, J., Doak, G. O. \& Everett, T. S. (1986). J. Am. Chem. Soc. 108, 4206-4213.
Bowen, L. H. \& Long, G. G. (1978). Inorg. Chem. 17, 551-554.
Briles, G. H. \& McEwen, W. E. (1966). Tetrahedron Lett. pp. 5299-5302.
Doak, G. O. \& Freedman, L. D. (1970). In Organometallic Compounds of Arsenic, Antimony and Bismuth. New York: John Wiley.
Ferguson, G., Glidewell, C., Lloyd, D., Metcalfe, S. \& Ruhl, B. L. (1987). J. Chem. Res. In the press.
Frenz, B. A. (1982). SDP-Plus Structure Determination Package. College Station, Texas, and Enraf-Nonius, Delft.
Glidewell, C., Lloyd, D. \& MetCalfe, S. (1986). Tetrahedron, 42, 3887-3890.
International Tables for X-ray Crystallography (1974). Vol. IV, pp. 71-147. Birmingham: Kynoch Press. (Present distributor D. Reidel, Dordrecht.)
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee.
Lumbroso, H., Lloyd, D. \& Harris, G. S. (1974). C.R. Acad. Sci. 278, C219-C222.
Pebler, J., Weller, F. \& Dehnicke, K. (1982). Z. A norg. Allg. Chem. 492, 139-147.
Venezky, D. L., Sink, C. W., Nevett, B. A. \& Fortescue, W. F. (1972). J. Organomet. Chem. 35, 131-142.

Acta Cryst. (1987). C43, 826-829

Bis(isothiocyanato)(2,2', $2^{\prime \prime}$-trihydroxytriethylamine-N,O,O', $O^{\prime \prime}$)nickel(II)

By S. Bamidele Sanni,* H. Behm, S. Garcia-Granda and Paul T. Beurskens
Crystallography Laboratory, University of Nijmegen, Toernooiveld, 6525 ED Nijmegen, The Netherlands
and V. C. Patel
Department of Chemistry, Fourah Bay College, University of Sierra Leone, Freetown, Sierra Leone

(Received 25 July 1986; accepted 24 October 1986)

Abstract. $\left[\mathrm{Ni}(\mathrm{NCS})_{2}\left(\mathrm{C}_{6} \mathrm{H}_{15} \mathrm{NO}_{3}\right)\right], M_{r}=324 \cdot 06$, mono-
clinic, $P 2, / c, \quad a=9.4048(10), b=10 \cdot 4130(7), \quad c=$ clinic, $P 2_{1} / c, a=9.4048(10), b=10.4130(7), c=$

[^0]$14.0647(16) \AA, \beta=101.05(1)^{\circ}, \quad V=1351.9(3) \AA^{3}$, $Z=4, D_{x}=1.59 \mathrm{~g} \mathrm{~cm}^{-3}, \lambda(\mathrm{Cu} K \alpha)=1.54051 \AA, \mu=$ $49.34 \mathrm{~cm}^{-1}, \quad F(000)=672, \quad T=290 \mathrm{~K}$. Final $R=$ 0.034 for 2234 'observed' reflections and 192 variables. Ni^{2+} is octahedrally coordinated $\left(\mathrm{NiN}_{2} \mathrm{O}_{3} \mathrm{~N}\right.$ chromophore) by the N atoms of the NCS^{-}ions (in mutually
(c) 1987 International Union of Crystallography
cis positions) and the N and the O atoms of the quadridentate $2,2^{\prime}, 2^{\prime \prime}$-trihydroxytriethylamine ligand. The five-membered rings $\mathrm{Ni}-\mathrm{N}(3)-\mathrm{C}(4)-$ $\mathrm{C}(3)\left[\mathrm{C}\left(3^{\prime}\right)\right]-\mathrm{O}(1), \quad \mathrm{Ni}-\mathrm{N}(3)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{O}(2)$ and $\mathrm{Ni}-\mathrm{N}(3)-\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{O}(3)$ adopt envelope conformations. The complex has pseudo- C_{s} symmetry with $\mathrm{Ni}, \mathrm{N}(3), \mathrm{O}(1), \mathrm{N}(2)$ and $\mathrm{N}(1)$ defining a pseudo-mirror plane. $\mathrm{C}(3)$ is disordered in two pseudo-mirror-related positions loccupancy: 0.65 (1):0.35 (1)]. Intermolecular $\mathrm{OH} \cdots \mathrm{S}$ and $\mathrm{OH} \cdots \mathrm{O}$ hydrogen bonds occur.

Introduction. In continuation of our studies of metal complexes of amino alcohols (Sanni, Lenstra \& Patel, 1985), we have determined the crystal structure of the title compound. Although the Ni complex of $2,2^{\prime}, 2^{\prime \prime}$ triaminotriethylamine has been studied (Rasmussen, 1959) the crystal structure of the Ni complex of $2,2^{\prime}, 2^{\prime \prime}$-trihydroxytriethylamine has, to the best of our knowledge, not been reported.

Experimental. The title compound was prepared by heating a mixture of 20 g of hydrated nickel(II) perchlorate and $10 \mathrm{~cm}^{3}$ of $2,2^{\prime}, 2^{\prime \prime}$-trihydroxytriethylamine with constant stirring for a few minutes. The resultant green viscous liquid was cooled, dissolved in $80 \mathrm{~cm}^{3}$ of distilled water and filtered. 15 g sodium thiocyanate dissolved in $50 \mathrm{~cm}^{3}$ of distilled water was added to the above filtrate. Green crystals of the title compound separated out after a few hours. Crystallization was from hot methanol. Elemental analysis confirmed the identity of the complex \{found: Ni 18•17, C 29.62 , H 4.65 , S 19.74 , $\mathrm{N} 13.00 \%$; calculated for $\left|\mathrm{Ni}(\mathrm{NCS})_{2}\left(\mathrm{C}_{6} \mathrm{H}_{15} \mathrm{NO}_{3}\right)\right|: \mathrm{Ni} \mathrm{18.13} \mathrm{C} 29.66,, \mathrm{H} \mathrm{4.63,S}$ 19.77, N 12.97\% \}.

A green crystal of approximately $0.20 \times 0.10 \times$ 0.23 mm was used for the measurements. Cu $K \alpha$ radiation was used with a graphite-crystal monochromator on a Nonius CAD-4 diffractometer. The unit-cell dimensions were determined from the angular settings of 25 reflections with $21 \leq \theta \leq 49^{\circ}$. The intensity data of 8395 reflections up to $\theta=70^{\circ}$ in the range $-11 \leq h \leq 5,-12 \leq k \leq 12,-17 \leq l \leq 17$ were measured, using the ω - 2θ-scan technique with a scan angle of 1.50° and a variable scan rate with a maximum scan time of 15 s per reflection. The intensity of the primary beam was checked throughout the data collection by monitoring three standard reflections every 30 min ; the final drift-correction factors were between 1.00 and 1.04 . Profile analysis was performed on all reflections (Lehmann \& Larsen, 1974; Grant \& Gabe, 1978); an empirical absorption correction was applied using ψ scans (North, Phillips \& Mathews, 1968) (correction factors were in the range 0.949 to 0.999 with an average of 0.976). Symmetry-equivalent reflections were averaged, $R_{\mathrm{imt}}=\sum(I-\langle I\rangle) / \sum I=$ $0 \cdot 032$, resulting in 2567 unique reflections of which 2234 were observed with $I>3 \sigma(I)$. Lorentz and
polarization corrections were applied and the data were reduced to $\left|F_{o}\right|$ values.

Using the program PATSYS (Behm \& Beurskens, 1985), the position of the Ni atom was located from the Patterson map, and automatically input into DIRDIF (Beurskens et al., 1982). The positions of the non-H atoms were located in one DIRDIF run. Isotropic least-squares refinement, using $S H E L X 76$ (Sheldrick, 1976), converged at $R=0 \cdot 110$. At this stage an additional empirical absorption correction was applied (Walker \& Stuart, 1983), leading to a further reduction of R to 0.101 (relative correction factors were in the range $0.813-1.303$ with an average of 0.996). The anisotropic refinement led to abnormally high anisotropy for $\mathrm{C}(3)$ indicating disorder involving this atom. A Fourier synthesis showed two alternative positions, to be denoted $\mathrm{C}(3)$ and $\mathrm{C}\left(3^{\prime}\right)$; least-squares refinement led to occupation factors 0.65 and 0.35 , respectively. The two disordered sites are pseudo-mirror-related by a plane through $\mathrm{O}(1)-\mathrm{Ni}-\mathrm{N}(3)-\mathrm{C}(4)$. All H atoms \{except those of $\left.C(3)\left[C\left(3^{\prime}\right)\right]\right\}$ were located from a difference Fourier synthesis; those of $C(3)\left[C\left(3^{\prime}\right)\right]$ were fixed at expected positions.

During the final stages of the refinement all positional parameters \{except those of H atoms of $\left.\mathrm{C}(3)\left[\mathrm{C}\left(3^{\prime}\right)\right]\right\}$, the anisotropic temperature factors of all non-H atoms (except those of the disordered atom, which was refined with one common isotropic temperature factor for both sites) and the occupation factor for $C(3)$ were refined. The H atoms had a fixed isotropic temperature factor, $U_{\text {iso }}=0.060 \AA^{2}$. The final conventional agreement factors are $R=0.034$ and $w R=0.044$ for the 2234 'observed' reflections and 192 variables. The function minimized was $\sum w\left(F_{o}-F_{c}\right)^{2}$ with $w=1 /\left[\sigma^{2}\left(F_{o}\right)+\right.$ $\left.0.003 F_{o}{ }^{2}\right]$ with $\sigma\left(F_{o}\right)$ from counting statistics. The maximum shift over e.s.d. ratio in the final full-matrix least-squares cycle was less than 0.10 for all atoms. The minimum and maximum electron densities in the final difference Fourier map were -0.35 and $+0.20 \mathrm{e}^{-3}$. Atomic scattering factors were taken from International Tables for X-ray Crystallography (1974). Plots were made with PLUTO (Motherwell, 1976) and geometrical calculations with PARST (Nardelli, 1983).

Discussion. Final positional and equivalent isotropic thermal parameters for the non- H atoms are given in Table 1;* selected molecular-geometry data are in Table 2. A stereoview of the molecule showing the crystallographic numbering scheme is given in Fig. 1,

[^1]Table 1. Fractional positional and equivalent isotropic thermal parameters $\left(\AA^{2} \times 10^{2}\right)$ with e.s.d.'s in parentheses

$U_{\text {eq }}=\frac{1}{3} \sum_{i} \sum_{j} U_{l j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.				
	x	y	z	$U_{\text {eq }}$
Ni	0.62509 (4)	$0 \cdot 16371$ (3)	0.21339 (3)	2.77 (1)
S(1)	0.71843 (8)	0.58325 (7)	$0 \cdot 10138$ (6)	5.04 (1)
S(2)	0.17257 (7)	$0 \cdot 11804$ (7)	-0.00193 (5)	4.54 (1)
$\mathrm{O}(1)$	0.62801 (24)	-0.02073 (19)	0.26899 (17)	5.29 (7)
$\mathrm{O}(2)$	0.51885 (20)	0.24344 (19)	0.32137 (13)	3.73 (5)
O(3)	0.79042 (21)	0.11807 (21)	0.13615 (13)	4.33 (6)
N(1)	0.63967 (28)	0.34621 (21)	$0 \cdot 16682$ (18)	$4 \cdot 26$ (7)
$\mathrm{N}(2)$	0.44489 (27)	0.12506 (24)	0.11678 (17)	4.54 (7)
N(3)	0.80415 (22)	0.17858 (19)	0.32536 (14)	3.15 (6)
C(1)	0.67113 (26)	0.44449 (24)	0.14018 (17)	3.38 (7)
C(2)	0.33379 (27)	$0 \cdot 12196$ (22)	0.06717 (17)	$3 \cdot 27$ (7)
$\mathrm{C}(3) \dagger$	0.7618 (5)	-0.0578 (5)	0.3207 (3)	4.60 (9)
C(3^{\prime}) \ddagger	0.7036 (9)	-0.0376 (8)	$0 \cdot 3602$ (6)	4.60 (9)
C(4)	0.8337 (3)	0.0549 (3)	0.37803 (21)	4.64 (9)
C(5)	0.7680 (3)	0.2825 (3)	0.38861 (20)	4.31 (9)
C(6)	0.6191 (3)	0.2628 (4)	0.41172 (20)	4.96 (10)
C(7)	0.9258 (3)	0.2176 (3)	0.27786 (20)	$3 \cdot 89$ (8)
C(8)	0.9339 (3)	0.1295 (3)	0.19363 (22)	4.66 (9)
\dagger Occupancy 0.648 (6). \ddagger Occupancy 0.352 (6).				

Table 2. Selected geometrical data (with e.s.d.'s)
(a) Bond distances (\AA) and angles $\left({ }^{\circ}\right)$ for Ni coordination

$\mathrm{Ni}-\mathrm{O}(1)$	$2 \cdot 072(2)$	$\mathrm{Ni}-\mathrm{N}(1)$	$2.023(2)$
$\mathrm{Ni}-\mathrm{O}(2)$	$2 \cdot 140(2)$	$\mathrm{Ni}-\mathrm{N}(2)$	$2.000(2)$
$\mathrm{Ni}-\mathrm{O}(3)$	$2 \cdot 115(2)$	$\mathrm{Ni}-\mathrm{N}(3)$	$2.079(2)$
$\mathrm{O}(1)-\mathrm{Ni}-\mathrm{O}(2)$	$93.8(1)$	$\mathrm{O}(1)-\mathrm{Ni}-\mathrm{O}(3)$	$91.6(1)$
$\mathrm{O}(1)-\mathrm{Ni}-\mathrm{N}(1)$	$174.9(1)$	$\mathrm{O}(1)-\mathrm{Ni}-\mathrm{N}(2)$	$91 \cdot 0(1)$
$\mathrm{O}(1)-\mathrm{Ni}-\mathrm{N}(3)$	$80.4(1)$	$\mathrm{O}(2)-\mathrm{Ni}-\mathrm{O}(3)$	$160 \cdot 3(1)$
$\mathrm{O}(2)-\mathrm{Ni}-\mathrm{N}(1)$	$86.3(1)$	$\mathrm{O}(2)-\mathrm{Ni}-\mathrm{N}(2)$	$96.3(1)$
$\mathrm{O}(2)-\mathrm{Ni}-\mathrm{N}(3)$	$81.6(1)$	$\mathrm{O}(3)-\mathrm{Ni}-\mathrm{N}(1)$	$86.7(1)$
$\mathrm{O}(3)-\mathrm{Ni}-\mathrm{N}(2)$	$102.5(1)$	$\mathrm{O}(3)-\mathrm{Ni}-\mathrm{N}(3)$	$80.6(1)$
$\mathrm{N}(1)-\mathrm{Ni}-\mathrm{N}(2)$	$94.0(1)$	$\mathrm{N}(1)-\mathrm{Ni}-\mathrm{N}(3)$	$94.6(1)$
$\mathrm{N}(2)-\mathrm{Ni}-\mathrm{N}(3)$	$171.0(1)$		

(b) Selected torsion angles $\left({ }^{\circ}\right)$ for $\mathrm{Ni}-2,2^{\prime}, 2^{\prime \prime}$-trihydroxytriethylamine coordination

$\mathrm{C}(3)-\mathrm{O}(1)-\mathrm{Ni}-\mathrm{N}(3)$	$-22.5(3)$	$\mathrm{C}(6)-\mathrm{O}(2)-\mathrm{Ni}-\mathrm{N}(3)$	$-1.2(2)$
$\mathrm{C}\left(3^{\prime}\right)-\mathrm{O}(1)-\mathrm{Ni}-\mathrm{N}(3)$	$18.9(4)$	$\mathrm{O}(2)-\mathrm{Ni}-\mathrm{N}(3)-\mathrm{C}(5)$	$-25.2(2)$
$\mathrm{O}(1)-\mathrm{Ni}-\mathrm{N}(3)-\mathrm{C}(4)$	$1.1(2)$		$\mathrm{C}(8)-\mathrm{O}(3)-\mathrm{Ni}-\mathrm{N}(3)$
		$\mathrm{O}(3)-\mathrm{Ni}-\mathrm{N}(3)-\mathrm{C}(7)$	$29.4(2)$

(c) Intermolecular hydrogen bonds

Donor-H \cdots Acceptor $D-H \quad D \cdots A \quad H \cdots A \quad D-H \cdots A$ $\begin{array}{lllll}\mathrm{O}(1)-\mathrm{H}(1) \cdots \mathrm{O}\left(2^{\prime}\right) & 0.80(4) \AA 2.980(3) \AA 2.19(4) \AA \quad 168(4)^{\circ}\end{array}$
$\mathrm{O}(2)-\mathrm{H}(2) \cdots \mathrm{S}\left(\mathrm{l}^{1}\right) \quad 0.73(4) \quad 3.142(2) \quad 2.43(5) \quad 166(4)$
$\begin{array}{llll}\mathrm{O}(3)-\mathrm{H}(3) \cdots \mathrm{S}\left(2^{\prime \prime}\right) & 0.92(4) \quad 3.159(2) \quad 2.29(5) \quad 158(3)\end{array}$
Symmetry code: (i) $-x+1, y-\frac{1}{2},-z+\frac{1}{2}$; (ii) $-x+1,-y,-z$.

Fig. 1. Stereoview of the molecule with atomic numbering.
the alternative disordered position for $\mathrm{C}(3)$ having been removed. The Ni^{2+} ion is octahedrally coordinated by the N atoms of the two NCS^{-}ions (in mutually cis positions) and the N and O atoms of the $2,2^{\prime}, 2^{\prime \prime}$-trihydroxytriethylamine molecule acting as a quadridentate ligand. A similar unit was reported for bis(isothiocyanato)($2,2^{\prime}, 2^{\prime \prime}$-triaminotriethylamine)nickel(II) (Hall \& Woulfe, 1958). The complex has pseudo- C_{s} symmetry, with $\mathrm{Ni}, \mathrm{N}(3), \mathrm{O}(1), \mathrm{N}(2)$ and $\mathrm{N}(1)$ defining a pseudo-mirror plane, which also approximately relates the two disordered positions $\mathrm{C}(3)$ and $\mathrm{C}\left(3^{\prime}\right)$. Endocyclic torsion angles and the Cremer \& Pople (1975) puckering parameters have been deposited.* The three five-membered rings $\mathrm{Ni}-\mathrm{N}(3)-$ $\mathrm{C}(4)-\mathrm{C}(3)\left[\mathrm{C}\left(3^{\prime}\right)\right]-\mathrm{O}(1), \mathrm{Ni}-\mathrm{N}(3)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{O}(2)$ and $\mathrm{Ni}-\mathrm{N}(3)-\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{O}(3)$ adopt envelope conformations. The planes $\mathrm{O}(2)-\mathrm{Ni}-\mathrm{N}(3)$ and $\mathrm{O}(3)-\mathrm{Ni}-$ $\mathrm{N}(3)$ are almost parallel [dihedral angle $8.55(8)^{\circ}$] and the $\mathrm{O}(1)-\mathrm{Ni}-\mathrm{N}(3)$ plane is almost perpendicular to these planes [dihedral angles $95 \cdot 32$ (8) and 93.23 (8) ${ }^{\circ}$, respectively].
The $\mathrm{Ni}-\mathrm{N}-\mathrm{C}-\mathrm{S}$ groupings are close to linear langles between $\mathrm{Ni}-\mathrm{N}$ and essentially linear $\mathrm{N}-\mathrm{C}-\mathrm{S}$ groups 11.99 (9) and $12.24(8)^{\circ}$, respectively], as was found for bis(isothiocyanato) ($2,2^{\prime}, 2^{\prime \prime}$-triaminotriethylamine)nickel(II) (Hall \& Woulfe, 1958), but this is contrary to the results reported by Rasmussen (1958). The $\mathrm{Ni}-\mathrm{N}$ bonds for coordinated NCS^{-}ions are almost perpendicular to each other [angle $94.0(1)^{\circ}$] and lie almost in the $\mathrm{O}(1)-\mathrm{Ni}-\mathrm{N}(3)$ plane [line-to-plane angles $0.86(9)$ and $2.77(7)^{\circ}$ for $\mathrm{Ni}-\mathrm{N}(1)$ and $\mathrm{Ni}-\mathrm{N}(2) \mathrm{]}$. The $\mathrm{Ni}-\mathrm{N}(3)$ bond distance, 2.079 (2) \AA, is comparable to the value of $2 \cdot 11$ (2) \AA reported for bis(isothiocyanato) ($2,2^{\prime}, 2^{\prime \prime}$-triaminotriethylamine)nickel(II) (Cradwick \& Hall, 1970), while the NiN (isothiocyanato) distances are shorter in the present compound [2.023 (2) and 2.000 (2) \AA against 2.12 (3) and $2.05(2) \AA]$. The $\mathrm{Ni}-\mathrm{O}$ bond distances compare favourably with the value of 2.096 (1) \AA reported for \quad bis(3-aminopropanol-O,N)bis(isothiocyanato)nickel(II) (Sanni et al., 1985). Details of the intermolecular hydrogen bonding involving O and S atoms are also given in Table 2.

The authors thank Professor E. H. Wright of Fourah Bay College, Sierra Leone, who organized the supply of the crystals, and Professor H. J. Geise for his interest in this work.

* See deposition footnote.

References

Behm, H. \& Beurskens, P. T. (1985). Z. Kristallogr. 170, 10.
Beurskens, P. T., Bosman, W. P., Doesburg, H. M., Van den Hark, Th. E. M., Prick, P. A. J., Noordik, J. H., Beurskens, G., Gould, R. O. \& Parthasarathi, V. (1982). Conformation in Biology, edited by R. Srinivasan \& R. H. Sarma, pp. 389-406. New York: Adenine Press.

Cradwick, P. D. \& Hall, D. (1970). Acta Cryst. B26, 1384-1385.
Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
Grant, D. F. \& Gabe, E. J. (1978). J. Appl. Cryst. 11, 114-120.
Hall, D. \& Woulfe, M. D. (1958). Proc. Chem. Soc. London, p. 346.

International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor D. Reidel, Dordrecht.)
Lehmann, M. S. \& Larsen, F. K. (1974). Acta Cryst. A30, 580-584.

Motherwell, W. D. S. (1976). PLUTO. A program for plotting molecular and crystal structures. Univ. of Cambridge, England.
Nardelli, M. (1983). Comput. Chem. 7, 95-98.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
Rasmussen, S. E. (1958). J. Inorg. Nucl. Chem. 8, 441-442.
Rasmussen, S. E. (1959). Acta Chem. Scand. 13, 2009-2022.
Sanni, S. B., Lenstra, A. T. H. \& Patel, V. C. (1985). Acta Cryst. C41, 199-200.
Sheldrick, G. M. (1976). SHELX76. A program for crystal structure determination. Univ. of Cambridge, England.
Walker, N. \& Stuart, D. (1983). Acta Cryst. A39, 158-166.

Structure du Di- μ-chloro-bis[triaquachloronickel(II)]-Dichlorure de Pipérazine

Par Eric Fanchon
Laboratoire de Cristallographie, Centre National de la Recherche Scientifique, Laboratoire associé à l'USMG, 166X, 38042 Grenoble CEDEX, France
Foued Halouani et Abdelaziz Daoud
Laboratoire du Solide, Ecole Nationale d'Ingénieurs de Sfax, BP W, 3038 Sfax, Tunisie
et Duc Tran Qui et Jean Vicat
Laboratoire de Cristallographie, Centre National de la Recherche Scientifique, Laboratoire associé à l'USMG, 166X, 38042 Grenoble CEDEX, France

(Reçu le 28 août 1986, accepté le 29 octobre 1986)

Abstract

Ni}_{2} \mathrm{Cl}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \cdot \mathrm{C}_{4} \mathrm{H}_{12} \mathrm{~N}_{2}^{2+} .2 \mathrm{Cl}^{-}, \quad M_{r}=\) 526.38, triclinic, $P \overline{1}, \quad a=6.606$ (3), $\quad b=8.821$ (2), $c=8.933$ (2) $\AA, \quad \alpha=110.11$ (2),$\quad \beta=98.50$ (3), $\quad \gamma=$ $105.35(3)^{\circ}, V=454.6 \AA^{3}, Z=1, D_{x}=1.922 \mathrm{~g} \mathrm{~cm}^{-3}$, $\lambda($ Mo $K \bar{\alpha})=0.71073 \AA, \mu=29.9 \mathrm{~cm}^{-1}, F(000)=268$, $T=295 \mathrm{~K}$. This crystal structure has been investigated by X-ray diffraction and refined to an R factor of 1.7% for 2250 independent reflections. The structure consists of groups of two edge-sharing $\left[\mathrm{Ni}_{2} \mathrm{Cl}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]$ octahedra, piperazinium $\mathrm{C}_{4} \mathrm{H}_{12} \mathrm{~N}_{2}^{2+}$ cations and isolated Cl^{-}ions: the packing structure is partly ensured by (O or N) $-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds. The centrosymmetric piperazine molecule adopts the chair form. The $\mathrm{Ni} \cdots \mathrm{Ni}$ distance in the dimer is $3 \cdot 480$ (1) \AA.

Introduction. L'étude de la structure du complexe de pipérazine $\mathrm{C}_{4} \mathrm{H}_{12} \mathrm{~N}_{2}^{2+} . \mathrm{Cu}_{2} \mathrm{Cl}_{6}^{2-}$ (Daoud, Ben Salah, Chappert, Renard, Cheikhrouhou, Tran Qui \& Verdaguer, 1986) a montré que l'ion magnétique Cu^{2+} se trouve dans des sites bipyramidaux formant des chaînes infinies d'ions CuCl_{3}^{-}. La variation de la susceptibilité de ce composé en fonction de la température montre que son comportement s'explique parfaitement en terme d'un ordre de type antiferromagnétique unidimen-

0108-2701/87/050829-03\$01.50
sionnel de l'ion Cu^{2+} avec $S=\frac{1}{2}$. Ce type de matériaux est actuellement très recherché pour leurs propriétés magnétiques (composés unidimensionnels, verres de spin, etc...). La pipérazine constitue également un ligand d'une grande importance dans les halogénures doubles de métaux de transition.

Dans le cadre d'une étude générale des interactions d'ions magnétiques dans les complexes organométalliques ($\mathrm{Cu}, \mathrm{Ni}, \mathrm{Co}$ etc...), nous avons fait la synthèse de cristaux d'un nouveau complexe de pipérazine avec le nickel $\left[\mathrm{Ni}_{2} \mathrm{Cl}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \cdot \mathrm{C}_{4} \mathrm{H}_{12}{ }^{-}$ $\mathrm{N}_{2}^{2+} .2 \mathrm{Cl}^{-}$. Nous rapportons ici l'étude structurale de ce composé.

Partie expérimentale. Préparation $d u$ dichlorure de pipérazine. Le mélange stæchiométrique d'une mole de pipérazine dissoute dans l'ethanol avec deux moles d'acide chlorhydrique conduit aisément au dichlorure de pipérazine $\mathrm{C}_{4} \mathrm{H}_{12} \mathrm{~N}_{2}^{2+} .2 \mathrm{Cl}^{-}$. Ce sel doit être lavé plusieurs fois avec l'éther anhydre et conservé à l'abri de l'humidité.

Préparation du complexe du nickel. Le chlorure de nickel hydraté $\mathrm{NiCl}_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ et le dichlorure de pipérazine $\mathrm{C}_{4} \mathrm{H}_{12} \mathrm{~N}_{2}^{2+} .2 \mathrm{Cl}^{-}$, pris dans le rapport © 1987 International Union of Crystallography

[^0]: * Author to whom correspondence should be addressed. Permanent address: Department of Chemistry, University of Benin, Benin City, Nigeria.

[^1]: * Lists of structure amplitudes, anisotropic thermal parameters, H -atom parameters, all bond distances and angles, torsion angles and puckering parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 43556 (18 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CHI 2HU, England.

